Lu, Zenghai, Kasaragod, Deepa K. and Matcher, Stephen J. (2011) Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography. ISSN 2156-7085
Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC could actually possess a true bit resolution lower than this due to the electronic jitter in the converter etc. We compare true 8- and 14-bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of equine tendon indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artifacts due to strong Fresnel reflection.